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Abstract
The Green–Nagdhi equations are frequently used as a model of the wave-
like behaviour of the free surface of a fluid, or the interface between two
homogeneous fluids of differing densities. Here we show that their multilayer
extension arises naturally from a framework based on the Euler–Poincaré theory
under an ansatz of columnar motion. The framework also extends to the
travelling wave solutions of the equations. We present numerical solutions of
the travelling wave problem in a number of flow regimes. We find that the free
surface and multilayer waves can exhibit intriguing differences compared to
the results of single layer or rigid lid models.

PACS number: 47.10.Df

1. Introduction

Internal gravity waves have been observed propagating in many different locations in the
world’s oceans, both through direct measurement of the change in density stratification [1]
and through the observed change in surface conditions, from satellite observations [2] and from
recent observations from the Space Shuttle in the region of Dongsha in the South China Sea [3].
These waves play a key role in the transport of energy in the ocean and, through wave breaking,
help to control mixing [4]. The observed waves are not classical one-dimensional phenomena.
With wave crests extending up to 200 km perpendicular to the direction of motion, the wave
properties vary with depth, exhibit curvature and interact with the underlying bathymetry and
with each other. These interactions give rise to a number of phenomena including refraction,
diffraction and wave front reconnection.

This paper examines one strongly nonlinear, multilayer, two-dimensional equation set
for the behaviour of such waves, which is derivable from a Euler–Poincaré (EP) variational
principle and shows that the equations admit travelling wave solutions which exhibit many
interesting phenomena. We begin by discussing the derivation of the multilayer Green–Nagdhi
(MGN) equations from a variational principle under the constraint of columnar motion. We

1751-8113/08/344018+13$30.00 © 2008 IOP Publishing Ltd Printed in the UK 1
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Figure 1. The multilayer fluid system.

then show that the dynamics contain a strong, fast barotropic mode and relate this to the rigid
lid models of other investigators. Finally we present numerical solutions to the travelling wave
problem for the system, illustrating the important behaviour of the free surface.

2. The multilayer Green–Nagdhi equations

We will begin by deriving a multilayer extension of the shallow water wave equations
commonly attributed to Green and Nagdhi [5], using a variational principle under the ansatz of
columnar motion. Consider a system of N homogeneous fluid layers which are acted upon by a
constant gravitational acceleration, g, with the layers initially arranged in a stable stratification.
Each layer thus possesses a constant density, ρi , for i = 1, . . . , N , with ρ1 < ρ2 < · · · < ρN .
We have chosen by convention to number the layers downwards from the free surface (see
figure 1). Let (ui , wi) denote the full three-dimensional velocity fields within the layers and hi

denote the depth of the layer interfaces with respect to the mean free-surface height at z = 0.

We define b = −hN+1 to be the fixed bottom topography to which the lowest layer is assumed
to remain attached. Summing over the layers, the total kinetic energy of the system is∫

K dx :=
N∑

i=1

∫ ∫
ρi

2

∫ hi

hi+1

|ui |2 + w2
i dz dx,

while the total gravitational potential energy, relative to a background state with vanishing
density, is ∫

V dx :=
∫ N∑

i=1

ρi

∫ hi

hi+1

z dz dx =
∫ N∑

i=1

ρi

2

(
h2

i − h2
i+1

)
dx.

We also assume two auxiliary equations within each layer, namely a three-dimensional
incompressibility condition,

∇ · ui +
∂wi

∂z
= 0, (1)

and a transport equation for the layer thicknesses, Di = hi −hi+1, based upon the conservation
of fluid within each layer:

∂Di

∂t
+ ∇ · Diui = 0. (2)
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We now make the ansatz of columnar motion with respect to the horizontal components
of velocity in each of the layers, so that

∂ui

∂z
= 0 for i = 1, . . . , N. (3)

Together (1) and (3) enforce a linear dependence on z for the vertical component of velocity,
wi , so that using the bottom boundary condition,

uN · ∇b + wN = 0,

and integrating upwards, we can find the vertical velocity within each layer in terms of the
horizontal velocity divergences within that layer and those below it:

wi = −z∇ · ui − ∇ · bui −
N∑

j=i+1

∇ · Dj(uj − ui ). (4)

This gives a velocity jump across the interfaces of

wi(hi+1) − wi+1(hi+1) = (ui+1 − ui ) · ∇hi+1,

which is necessary to avoid the layers separating. Substituting (4) into the definition of kinetic
energy and integrating in the vertical give∫

K dx =
∫ N∑

i=1

ρi

2

(
Di |ui |2 + Di

[
D2

i

3
(∇ · ui )

2 + Di∇ · uiWi + W 2
i

])
dx,

where we have defined quantities

Wi := wi(hi+1) = ui · ∇
⎛
⎝−b +

N∑
j=i+1

Dj

⎞
⎠ +

N∑
j=i+1

∇ · Dj uj ,

which are equal to the vertical velocity at the bottom of each layer.
We now use Hamilton’s principle in the form

δS := δ

∫ ∫
� dx dt = 0,

applied for the reduced Lagrangian defined by

� := K − V,

coupled to (2). The set of physically admissible horizontal velocities in each layer (a collection
of vector fields over the horizontal domain, tangential on the boundary) form a Lie algebra
under what is termed the ideal fluid bracket operator where functions F,G, of a vector field
vi , are given by

{F,G}(vi ) :=
∫

vi ·
(

δG

δvi

· ∇ δF

δvi

− δF

δvi

· ∇ δG

δvi

)
dx, (5)

for variations defined by

lim
ε→0

1

ε
[F(v + εδv) − F(v)] =

∫
δv · δF

δv
dx,

while the layer thicknesses form a set of field densities which are Lie-transported (i.e. advected)
by the Eulerian velocity flow. This places the system within the formalism of Euler–Poincaré
theory on semi-direct products, which extends the results of Hamiltonian mechanics into this
more generalized algebraic structure.

3



J. Phys. A: Math. Theor. 41 (2008) 344018 J R Percival et al

Similar formulations have previously been derived for several alternative models for fluid
flow, starting with the Euler equations, as originally considered by Poincaré and including in
particular the Camassa–Holm [6] and KdV [7] shallow water equations, models which, like
the single layer Green–Nagdhi equation, have been used successfully to model the behaviour
of nonlinearly dispersive water waves. The Euler–Poincaré theory has connections with
many other topics in geometric mechanics, notably Lagrangian reduction [8], which has been
applied successfully in several areas of compressible and incompressible fluid flow and has
implications for numerical methods, through a more rigorous understanding of the flow of
conserved quantities in the system as geodesic motion on a suitable manifold.

Calculating the requisite adjoint actions and their duals to generate the Euler–Poincaré
equations [9] in this framework (analogous to the Euler–Lagrange equations for a finite
dimensional Hamiltonian system) gives the MGN equations of motion,

∂mi

∂t
+ ui · ∇mi + mi · ∇uT

i + mi∇ · ui = Di∇ δ�

δDi

, (6)

in terms of the layer momenta, mi := δ�
δui

, dual to the layer velocities. The MGN equation

is forced by a pressure-like term, δ�
δDi

, containing the effects of gravity and nonhydrostatic
terms, which appears out of viewing the relation between kinetic and potential energy in the
system as a semi-direct product over the combined space of layer velocity and thickness fields.
Explicitly, these terms are given by

mi = ρi

[
Diui − ∇

(
D3

i

3
∇ · ui +

Wi

2

)
− Di

(
D2

i

2
∇ · ui + Wi

)
∇hi+1

]

−Di∇
i−1∑
j=1

ρjDj

(
Di

2
∇ · uj + Wj

)
,

δ�

δDi

= |ui |2
2

− ρigh1 −
i−1∑
j=1

(ρj − ρi)Dj

+
i−1∑
j=1

ρj

[
ui · ∇

(
Dj

2
∇ · uj + Wj

)
+ ∇ ·

(
Dj

2
∇ · uj + Wj

)
(uj − ui )

]
.

Although complex, many of the terms in the equation are in balance. This is perhaps most
clearly seen by rewriting (6) in the form

∂

∂t

(
mi

Di

)
+ ui · ∇

(
mi

Di

)
+

(
mi

Di

)
· ∇uT

i = ∇ δ�

δDi

.

Passing the material derivative part way through the definition of the layer momenta gives

diui

dt
= −g∇

⎛
⎝h1 +

i−1∑
j=1

ρj − ρi

ρi

Dj

⎞
⎠

︸ ︷︷ ︸
Ph

+
1

D1
∇D2

i

di

dt

(
Di∇ · ui

3
+

Wi

2

)

+
di

dt

(
Di∇ · ui

2
+ Wi

)
∇hi+1 + ∇

i−1∑
j=1

ρj

ρi

Dj

dj

dt

(
Dj∇ · uj

2
+ Wj

)
,

identical to the equation set given for the same fluid system in the two-layer case by Choi and
Camassa [10] (henceforth the CC equation) by an asymptotic expansion method and by Liska

4
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and Wendroff [11] by directly substituting the definition of wi in the Euler equations. It also
agrees with the one-dimensional multilayer equation of Choi [12]. The quantity labelled Ph

is a hydrostatic pressure, representing forcing from both deviations to the free-surface height
and from variations in the thicknesses of the above layers. Calculating the full commutator[
di/dt,Lij uj

]
for the symmetric second-order elliptic operator defined by mi = L(D, b)ij uj ,

the equations may also be written entirely in terms of gradients of the horizontal velocity and
layer thicknesses:

L(D, b)
diui

dt
= −ρig∇

⎛
⎝h1 +

i−1∑
j=1

ρj − ρi

ρi

Dj

⎞
⎠− ρi

Di

∇
(

D2
i

[
Ri

3
+

Si

2

])

+

(
Ri

2
+ Si

)
∇hi+1 + ∇

i−1∑
j=1

ρj

ρi

Dj

(
Rj

2
+ Sj

)
, (7)

where

Ri := Di

[
(∇ · ui )

2 + tr
(∇uT

i · ∇u
)]

,

Si := −
⎡
⎣(ui · ∇∇hi+1) · ui +

N∑
j=i+1

∇ · (∇ · (Dj uj uj ))

⎤
⎦ .

In this form we see the operator L acting as a smoother on the hydrostatic pressure, while
there is an induced remainder term which grows with the nonlinearity and further couples the
layers.

A final rearrangement of (6) gives an equation similar to the vorticity form of the Euler
equations:

∂

∂t

(
m1

D1

)
+ ∇

(
ui · mi

Di

)
+

[
∇ ×

(
mi

Di

)]
× ui = ∇ δ�

δDi

.

Taking curls shows that the equations materially conserve a quantity,

qi := 1

Di

∇ ×
(

mi

Di

)
,

identified with potential vorticity in each layer. These conservation laws may also be derived
from the existence of individual Kelvin circulation theorems in each layer, namely

d

dt

∮
c(ui )

mi

Di

· dx = 0,

where the integral is over the closed loop, c, assumed to move at the layer velocity, ui . In
turn, it can be shown that the existence of these circulation theorems and their associated
conservation laws follows in turn from the invariance of the EP formulation to fluid parcel
relabelling in the configuration space, provided that it preserves Eulerian quantities. For fuller
details of the Kelvin–Noether theorem for EP equations in the context of semi-direct product
Lie algebras, see [9]. The integral over the entire layer volume of any function of qi represents
a conserved quantity of the MGN equations. These are the Casimirs of the Lie–Poisson
Hamiltonian operator and hence of the Lie–Poisson bracket (5). That is they are functionals,
C, which satisfy {C,H } = 0 for any Hamiltonian, H.

5
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3. The barotropic and baroclinic modes

Linearizing the two-layer MGN equations around a state of rest, with standing fluid heights
d1, d2, gives the system

∂

∂t

[
u1 − 1

3
d2

1∇∇ · u1 − 1

2
d1d2∇∇ · u2

]
= −g∇(D1 + D2),

∂

∂t

[
u2 − 1

3
d2

2∇∇ · u2 − ρ1

ρ2
d1

(
1

2
d1∇∇ · u1 + d2∇∇ · u2

)]
= −g∇

(
D2 +

ρ1

ρ2
D1

)
,

∂D1

∂t
+ d1∇ · u1 = 0,

∂D2

∂t
+ d2∇ · u2 = 0.

Taking divergences of the momentum evolution equations then gives the linearized wave
equations

∂2

∂t2

(
D1 − d2

1

3
�D1 − d1d2

2
�D2

)
= gd1�(D1 + D2),

∂2

∂t2

[
D2 − d2

2

3
�D2 − ρ1d1

ρ2
�

(
d1

2
D1 + d2D2

)]
= gd2�

(
D2 +

ρ1

ρ2
D1

)
,

with � := ∂2/∂x2 +∂2/∂y2, the standard two-dimensional Laplacian operator. Specializing to
one-dimensional plane wave solutions, Di = ci exp[i(ωt − kx)], we obtain a linear dispersion
relation(

1 +
1

3
d2

1k2 +
1

3
d2

2k2 +
ρ1

3ρ2
d1d2k

2 +
1

9
d2

1d2
2k4 +

ρ1

12ρ2
d3

1d2k
4

)
ω4

− gk2

(
(d1 + d2)

[
1 +

1

3
d1d2k

2

]
− ρ1

2ρ2
d1(d1 − d2)

2k2

)
ω2 + gg′d1d2k

4 = 0,

with g′ := g(ρ2 − ρ1)/ρ2 as a reduced gravity term. Plotting solutions shows both a fast
barotropic mode, ωf , and a slow baroclinic one, ωs, as shown in figure 2. Under the limits
g′d1d2 � g(d1 + d2)

2, dik � 1, we re-obtain the shallow water modes:

ωf =
√

g(d1 + d2)k, ωs =
√

g′ d1d2

d1 + d2
k.

Looking for one-dimensional solutions to the linearized system with u2 = λu1 and
D2 = (µ − 1)D1, we obtain equations

∂

∂t

(
1 −

[
1

3
d2

1 +
λ

2
d1d2

]
∂2

∂x2

)
u1 = −gµ

∂D1

∂x

∂

∂t

(
λ −

[
λ

3
d2

2 + λ
ρ1

ρ2
d1d2 +

1

2

ρ1

ρ2
d2

1

]
∂2

∂x2

)
u1 = (−gµ + g′)

∂D1

∂x

∂D1

∂t
+ d1

∂u1

∂x
= 0

(µ − 1)
∂D1

∂t
+ λd2

∂u1

∂x
= 0.

6
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Figure 2. The linear dispersion relation for the MGN equations. In this case d1 = 100 m,
ρ1 = 1023 kg m−3, d2 = 200 m, ρ2 = 1026 kg m−3. Note the wide separation of scales between
the two modes.

The final two equations give an obvious relation

(µ − 1) = d2

d1
λ,

while the first two equations can be rearranged to give ∂2u
∂x2 in terms of quantities other than u:[

λ

3

(
d2

1 − d2
2

)
+ λ

(
λ

2
− ρ1

ρ2

)
d1d2 − 1

2

ρ1

ρ2
d2

1

]
∂

∂t

∂2u1

∂x2
= (gµ(λ − 1) + g′)

∂D1

∂x
.

On re-substituting this gives a cubic equation for λ. For g′ small, one approximate solution is
µ = 1 + d2/d1, λ = 1; another consistent solution has µ ≈ 0, λ ≈ −d1/d2. We identify the
first solution with the barotropic mode and the second with the baroclinic. This shows that the
linear dynamics of the barotropic and baroclinic modes are governed by

∂ubt

∂t
= −g

∂Dbt

∂x
,

∂Dbt

∂t
= (d1 + d2)

∂ubt

∂x
,

and
∂Lubc

∂t
= −g′ ∂Dbc

∂x
,

∂Dbc

∂t
+ d1

∂ubc

∂x
= 0,

respectively, where

Lu =
(

d1/d2 −
[
d1d2/3 +

ρ1

ρ2
d1d2 − 1

2

ρ1

ρ2
d2

1

]
∂2

∂x2

)
u,

the linearization of the MGN operator. This shows that to leading order, the barotropic
mode dynamics are precisely those of the one-layer shallow water equations. Deviations in
the free-surface height are directly balanced by transient changes in the barotropic velocity.
The baroclinic mode meanwhile shows the smoothing of the reduced gravity pressure, as
represented in (7).

7



J. Phys. A: Math. Theor. 41 (2008) 344018 J R Percival et al

3.1. The rigid lid assumption

As we have shown the free-surface MGN equations exhibit a strong barotropic mode, which
acts on a much faster scale than the baroclinic modes, which are of primary interest for studies
of internal waves. This has important implications for numerical calculation, since for time
stepping methods which are conditionally stable it will be the fast barotropic mode which sets
the value of the constraint. For a kilometre deep ocean basin at hundred meter resolution
�x/�t � c = √

gH requires time steps below 1 s, much too small for most practical
purposes. One method frequently used to modify the dynamics and remove this difficulty is
to impose a rigid top boundary at z = 0. Under the EP framework, this can be easily enforced
using an additional constraint term in the reduced Lagrangian:∫

φ

[
N∑

i=1

Dj − b

]
dx,

with φ[x, y], a Lagrange multiplier, being determined by the constraint that the term in brackets
vanishes everywhere. Under application of the EP methodology an additional pressure term
equal to the multiplier φ, thus constant in all layers, appears in the term due to the thickness
densities, δ�/δDi . The value of φ can be obtained by applying the rigid lid condition to the
derived equations and solving the resultant elliptic system. The net effect of these additional
terms is to modify the dispersion relation for the system, reducing its dimension so that the
original fast mode is removed. The modified dispersion relation is found to be[

1 +
1

d1 + d2

(
d2

1d2

[
ρ1

ρ2
+

1

3

]
− d1d

2
2

6
− ρ1d

3
1

2ρ2

)
k2

]
ω2 − g′ d1d2

d1 + d2
= 0,

which possesses only the baroclinic roots, as stated. This means that the timestep for numerical
methods is then controlled by the large baroclinic mode representing most of the energy of
internal solitary waves.

We observe that under the rigid lid assumption, the no-normal flow condition requires
that the vertical velocity vanishes on the top surface so that

w(z = 0) := D1∇ · u1 + W1 = 0.

If this substitution is made in the reduced Lagrangian before the variations are taken, then the
resulting equations in the two-layer, one-dimensional, case agree exactly with the equations
from the multiplier method, since in one dimension conservation of the MGN PV is automatic.
Both methods produce a system identical to the CC equation for flow under a rigid lid with
varying topographies.

4. Travelling wave solutions of the MGN equations

The one-dimensional GN equations are widely known to posses a travelling wave solution [5]
of the form

D = d

(
1 +

(
c2

gd
− 1

)
sech2

(√
3(c2 − gd)

2cd
(x − ct)

))
,

u = c

(
1 − d

D

)
, (8)

where the quantity c is the group speed (and, since these are shallow water, waves phase speed)
of a chosen wave. These waves exist for all c such that a condition for supercritical flow,

8
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c2

gd
> 1, (9)

is satisfied. This also defines a Froude number, c/
√

gd, for the system. The sech2 form is also
found for the KdV equation although the precise definition of velocity differs. The equation
giving the GN travelling wave velocity, (8), follows directly from the transport equation for
layer thickness (2). Examining the Lagrangian (now calculated against a flat background state)
in the case N = 1,

� =
∫

dx dy
ρ

2

[
D|u|2 +

D3

6

(
∂u

∂x

)2

− g(D − d)2

]
,

we see that the travelling wave solution is a solution of the Hamiltonian formulation obtained
by a direct substitution of the definition of u for a travelling wave, (8). The resulting Lagrangian
is

L(D, dD/dX) = ρ

2
c2D

(
1 − d

D

)
− g(D − d)2 +

c2

6D

(
dD

dx

)2

,

which under the standard Legendre transform, p = ∂L
∂q̇

, gives a canonical Hamiltonian in terms
of q = D of

H(p, q) = ρ

2

[
c2d2

6q
p2 − c2q

(
1 − d

q

)
+ g(q − d)2

]
.

The same equation can also be derived indirectly [13] by noting that the one-dimensional GN
equation possesses a conserved layer momentum,

∫
m/D dx, and that travelling waves are

stationary functions of the quantity

Q =
∫

H − c
m

D
dx.

That both methods give the same final result follows from the invariance of the original
Lagrangian � to Galilean boosts, (x, t) → (x − ct, t), so that changing to a frame moving at
the constant wave speed requires only the redefinition of the rest kinetic energy.

The Hamiltonian structure extends easily to the multilayer case, where each layer
possesses an equation identical to (8). For general N, the MGN travelling wave solution
is a homoclinic orbit of the Hamiltonian system given by

H(p, q) = 1

2
pTA−1p

+
1

2

N∑
i=1

ρi

⎡
⎣g

⎛
⎝ N∑

j=i

(qj − dj )
2 −

N∑
j=i+1

(qj − dj )
2

⎞
⎠− c2qj

(
1 − dj

qj

)2
⎤
⎦ ,

around the equilibrium point (p, q) = (0, d), where p, q and d are the N-dimensional vectors
containing pi, qi and di and A is an N × N matrix with elements defined by

Aij =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

c2

(
ρid

2
i

3Di

+
i−1∑
k=1

ρkd
2
k

Dk

)
i = j

min{i,j}∑
k=1

c2 ρkd
2
k

2Dk

i �= j

.

Since A depends on q, the system is not separable and the dynamics can be extremely complex.
Figure 3 shows numerical solutions for the travelling wave problem, calculated by shooting

9
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(a)

(b)

Figure 3. Numerical shooting solutions for the MGN travelling wave problem showing (a) a two-
layer wave of depression (b) a two-layer wave of elevation. The CC and two-layer KdV solutions
for the fluid interface are shown for reference. In both cases, the interface of the MGN wave
virtually overlies the CC wave for the chosen wave speed with the KdV wave noticeably smaller in
magnitude. However, the MGN equations also give a free surface deviation. The apparent dipole
structure of the free surface in case (b) is not evident in the individual layer thicknesses which
remain precisely out of phase.

along the unstable manifold from the equilibrium (p, q) = (0, d) at x = −∞. The integration
problem was found to be extremely stiff and the use of a symplectic integration method, the
generalized leapfrog method, was implemented to maintain stability. For comparison, we also
plot the relevant numerical solutions to the CC equations [10] and the algebraic solution to the
two-layer KdV equation [14].

The condition for supercritical flow and thus existence (9) generalizes to a condition that
the stable manifold of the system at x = −∞ must be of dimension greater than zero. This is
equivalent to the condition that det(V − λ2A) = 0 has real solutions, where V is the matrix,
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h
1

h2

h
1

h2

h
1

h2

(a)

(b)

(c)

Figure 4. Contour plots of potentials which allow (a) a wave of elevation, (b) a wave of depression,
(c) no travelling wave solutions. In the first two cases the trajectory for the travelling wave solution
of the particular regime is plotted as a dotted line, contained within the zero contour. The fish-like
looped zero contours disappear with increasing wave speed through a bifurcation with a second
(h1, h2) contour joining (∞,±∞) to (−∞,±∞) with the sign of h2 positive for waves of elevation
and negative for waves of depression.
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Vij = − ∂2H
∂qi∂qj

∣∣∣∣
(p,q)=(0,d)

=
⎧⎨
⎩ρi

(
c2

di

− g

)
i = j

−gρmin{i,j} i �= j

.

This matrix comes from the form of the Jacobian matrix of the Hamiltonian system linearized
around the far field values. For N = 2, the critical condition for internal and external travelling
waves respectively becomes

c2

g
>

d1 + d2 ∓ ((d1 + d2)
2 − 4(ρ2 − ρ1)d1d2/ρ2)

1/2

2
. (10)

This is however only a necessary condition on the wave speed and there exist stratifications
for which no internal travelling wave is possible for c supercritical. This can be illustrated by
considering the form of the potential

V(q) = 1

2

N∑
i=1

ρi

⎡
⎣g

⎛
⎝ N∑

j=i

(qj − dj )
2 −

N∑
j=i+1

(qj − dj )
2

⎞
⎠− c2qj

(
1 − dj

qj

)⎤⎦
in the Hamiltonian in the regimes where there exist waves of elevation, waves of depression,
and for cases with no travelling wave. Contour plots of the potential under these three
conditions are shown in figure 4, along with the marked trajectories where a travelling wave
exists. The potential is seen to undergo bifurcations with the creation or destruction of
homoclinic contours around the equilibrium at q = d. The direction of the contour defines
whether the wave is of elevation or depression and its destruction with increasing wave speed
represents a limit on the speed (and thus amplitude) of travelling waves allowed by the system.
This follows since for N=2, the matrix A is positive definite and thus pT A−1p is a strictly
positive quantity. Jo and Choi [15] investigate the two-layer system in the rigid lid case and
find conditions on minimum and maximum wave speed similar to those presented here. The
critical flow condition is

c2

g
>

(ρ2 − ρ1)d1d2

ρ2(d1 + d2)
;

this is the first-order term in the Taylor series expansion of (10) in the limit (d1 + d2)
2 �

4(ρ2 − ρ1)d1d2/ρ2. This suggests that the rigid lid model is a good approximation when
density differences are small, or the aspect ratio d1/d2 differs greatly from unity, as may be
expected. A similar set of calculations and analysis is in progress for the case N = 3, which
appears to increase the dimension of possible behaviour.

5. Summary

We have introduced a set of equations derived from a variational principle under an ansatz
of columnar motion. These have been shown to be identical to the multilayer Green–Nagdhi
equations derived independently by other researchers by other methods. These equations are
proved to contain a fast barotropic mode which is virtually unmodified by the nonlinear part
of the MGN operator. This means that the equations require careful handling in numerical
simulations. The travelling wave solutions are also shown to be derivable from a variational
principle, and show a more complex range of behaviour and waveforms than the single layer
or rigid lid case.
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